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Abstract
We characterize the two-site marginals of exchangeable states of a system of
quantum spins in terms of a simple positivity condition. This result is used in
two applications. We first show that the distance between two-site marginals of
permutation invariant states on N spins and exchangeable states is of order 1/N .
The second application relates the mean ground state energy of a mean-field
model of composite spins interacting through a product pair interaction with
the mean ground state energies of the components.

PACS numbers: 05.30.−d, 03.67.−a, 02.50.Cw

1. Introduction

The mean-field approximation is a very common approach in statistical mechanics. It consists
in replacing suitably chosen parts of the interaction by their expectation values. This generally
simplifies the problem but leads to nonlinear self-consistent equations for the dynamics and
the equilibrium states. This kind of approximation often leads to reasonable results in regimes
where the interactions are rather weak. In other cases, the self-consistency equations may
induce artificial phase transitions [12].

A characteristic feature of the most basic version of the approximation is that every
particle interacts in the same way with every other particle. Therefore the Hamiltonian and the
ground and equilibrium states have a huge symmetry: particles can be arbitrarily permuted. By
mean-field models we here mean quantum spin systems which exhibit this kind of symmetry.
There is a vast literature on the subject dealing both with the structure of states and dynamical
maps [3, 7, 13]. We briefly recall some essential notions and results.

A state ω of a system of N identical spin-(d − 1)/2 particles is determined by a density
matrix ρ ∈ MdN (C) = ⊗NMd(C), whereMd(C) denotes the complex matrices of dimension
d:

ω(A) = Tr ρA, for A ∈ ⊗NMd(C).
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An N-particle state is symmetric if it is invariant under permutations of the particles, i.e., if

Uπ(|�1〉 ⊗ · · · ⊗ |�N 〉) = |�π(1)〉 ⊗ · · · ⊗ |�π(N)〉 where |�i〉 ∈ C
d , (1)

then

ω(A) = ω(UπAU ∗
π ) for every permutation π of {1, . . . , N} and A ∈ ⊗NMd(C).

In terms of the density matrix ρ of ω,

ρ = U ∗
πρUπ .

Consider a system of (N + M) particles with a symmetric state ω. For each subsystem of
N particles the marginals of ω are symmetric N-particle states ωN ,

ωN(A) := ω(A ⊗ (⊗M1
¯
)) for every A ∈ ⊗NMd(C).

Note that, due to the symmetry of ω, only the number of spins in a subsystem matters and not
the precise sites on which the subsystem lives. The density matrices ρN associated with these
states are obtained by taking partial traces of the density matrix ρ that defines ω,

ρN = TrMρ =
∑

(i1,...,iM )

(
id ⊗ ∣∣ei1 · · · eiM

〉〈
ei1 · · · eiM

∣∣)(ρ),

where {ei}d−1
i=0 is a basis of C

d . The converse is not true, a symmetric N-particle state ω cannot
always be extended to a symmetric (N + M)-particle state. For example, consider the pure
two-qubit state determined by |�〉 = 1√

2
(|01〉 + |10〉). This state is symmetric but has no

symmetric extension to three qubits [14].
If we want a symmetric state to have a symmetric extension to an arbitrarily large system,

we have to impose the stronger condition of exchangeability. A state ω on ⊗NMd(C) is called
exchangeable if it admits for any M > 0 a symmetric extension ω(N+M) to ⊗N+MMd(C).
Exchangeability is a quite strong condition, as we see in the following quantum version of de
Finetti’s theorem [1, 6].

Theorem 1. If ω is an exchangeable state on ⊗NMd(C), then

ω =
∫
Sd

dµ(σ) ⊗N σ,

where Sd denotes the state space of Md(C) and µ is a probability measure on Sd .

The exchangeable states are mixtures of symmetric product states which implies that they
are non-entangled and so only classical correlations are possible [11]. The inverse implication
is not true, not every symmetric separable state is exchangeable. Consider, for instance, two
density matrices ρ, σ ∈ Md(C), then the state associated with 1

2 (ρ ⊗σ +σ ⊗ρ) is symmetric
and separable on Md(C) ⊗ Md(C) but generally not exchangeable.

2. Two-site marginals of exchangeable states

We want to characterize the exchangeable states on two particle systems with d degrees of
freedom.

Theorem 2. A symmetric state ω on Md(C) ⊗ Md(C) is exchangeable iff

ω(B ⊗ B) � 0 for all B ∈ Mh
d(C),

where Mh
d(C) denotes the complex Hermitian matrices of dimension d.
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Proof. If ω is an exchangeable two-particle state, then by theorem 1 we have that

ω(B ⊗ B) =
∫
Sd

dµ(σ)σ (B)2 � 0 for every B ∈ Mh
d(C).

The remaining of the proof is postponed until section 2.2.
�

In order to prove the inverse direction we use the polar cone theorem to invert the role of
states and observables. So, instead of proving that ω is exchangeable if ω(B ⊗ B) � 0 for
every B ∈ Mh

d(C), we will prove that a flip-invariant, Hermitian A ∈ Md(C) ⊗ Md(C) is a
positive combination of Bα ⊗ Bα,Bα ∈ Mh

d(C), if Tr(σ ⊗ σA) � 0 for every density matrix
σ ∈ Sd .

More explicitly, given a real Hilbert space H and a set C ⊂ H, the cone

C∗ := {y | 〈x, y〉 � 0 for every x ∈ C},
is called the polar cone of C.

Theorem 3. Let H be a real Hilbert space and C a subset of H, then

(C∗)∗ = Cone(C),

where Cone(C) denotes the closure of the cone generated by C.

Let F be the flip operator on C
d ⊗ C

d ,

F(ϕ ⊗ ψ) := ψ ⊗ ϕ.

We consider the real subspace K of the complex Hermitian matrices of dimension d2 which
commute with F and equip K with the trace scalar product

〈·, ·〉 : Mh
d2(C) × Mh

d2(C) → C : (A1, A2) 	→ Tr A1A2.

We choose C to be the set of all symmetric two-site product states determined by density
matrices on C

d :

C = {ρ ⊗ ρ | ρ ∈ Md(C), ρ is a density matrix}.
It is then enough to prove that the polar cone of C is the closed cone C∗ generated by{
B ⊗ B | B ∈ Mh

d(C)
} ∪ {L | L ∈ (Md(C) ⊗ Md(C))h, L � 0 and LF = FL},

where L � 0 means that L is a positive semi-definite matrix. Indeed, applying the polar cone
theorem, we get

C∗∗ = {
ρ| Tr ρ(B ⊗ B) � 0, B ∈ Mh

d(C) and Tr ρL � 0, L � 0}
= Cone(C) = Cone({ρ ⊗ ρ | ρ ∈ Sd}).

We shall first prove the analogous result for the classical case, that is when we replace
the matrix algebra Md(C) by the diagonal matrices of dimension d and states by probability
measures on the relevant configuration space.
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2.1. A classical intermezzo

Let 	 be a finite set and

C := {µ × µ | µ is a probability measure on 	}
then

C∗ = {f : 	 × 	 → R | f (x, y) = f (y, x) and

(µ × µ)(f ) � 0 for all measures µ on 	}.
The aim is to show that the cone C∗ is generated by functions of the form f1 + f2 where

(i) f1 � 0 and f1(x, y) = f1(y, x)

(ii) f2 = g × g with g : 	 → R.

Fix f in the interior of C∗. By subtracting from f a suitably chosen non-negative
symmetric function, we can arrange to have a strictly positive measure µ0 on 	 such that

(µ0 × µ0)(f ) = 0 and (µ × µ)(f ) � 0 for all measures µ. (2)

Let µ0 now be a measure as in (2). For any τ , a sufficiently small real functional on 	,
µ0 + τ is non-negative on 	. Therefore, by assumption,

((µ0 + τ) × (µ0 + τ))(f ) � 0. (3)

As (µ0 × µ0)(f ) = 0, this can only hold if

(µ0 × τ)(f ) = 0 for all choices of τ on 	

In this case, condition (3) translates into

(τ × τ)(f ) � 0, for all τ. (4)

As the matrix F := [f (x, y)] is real and equal to its transpose, (4) amounts to requiring that
F be semi-definite positive. But then there exist cj (x) such that

f (x, y) = [F ]x,y =
∑

j

[cj (x)cj (y)],

proving our statement.

2.2. The quantum case

Proof. [Proof of second part of theorem 2]
We have now C := {ρ ⊗ ρ | ρ is a density matrix in

Md(C)} and

C∗ := {A ∈ Mh
d2(C) | AF = FA and Tr A(ρ ⊗ ρ) � 0 ∀ density matrices ρ ∈ Md(C)}.

The aim is to prove that the cone C∗ is generated by matrices of the form A1 + A2 with

(i) A1 � 0 and A1F = FA1.
(ii) A2 = B ⊗ B with B ∈ Mh

d(C).

As in the previous section we fix A in the interior of C∗ and subtract from A a positive
semi-definite matrix to have an invertible density matrix ρ0 such that

Tr A(ρ0 ⊗ ρ0) = 0 and Tr A(ρ ⊗ ρ) � 0 for all density matrices ρ.

For any choice of B ∈ Mh
d(C), with ‖B‖ sufficiently small, ρ0 +B is still positive semi-definite

and so

Tr A((ρ0 + B) ⊗ (ρ0 + B)) � 0. (5)
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As Tr A(ρ0 ⊗ ρ0) = 0, this can only hold if

Tr(ρ0 ⊗ B)A = 0 for every B ∈ Mh
d(C).

In this case, condition (5) translates into

Tr(B ⊗ B)A � 0 for every B ∈ Mh
d(C). (6)

We now extend the argument for the classical case, see section 2.1 to the quantum case.
Therefore we introduce real linear maps,

Vd : Mh
d(C) → H and

Md : (Md(C) ⊗ Md(C))h → B(H),

where H is a suitably chosen real Hilbert space and B(H) denotes the linear operators on that
space such that

• Vd and Md are one-to-one and onto.
• For every A ∈ C∗,Md(A) is positive, this will follow from condition (6), Md(A)T =

Md(A) and Tr A(B ⊗ B) = 〈Vd(B)|Md(A)|Vd(B)〉.
• M−1

d (|τ 〉〈τ |) = V −1
d (τ ) ⊗ V −1

d (τ ).

With these maps we can prove that A = ∑
α Bα ⊗ Bα . Indeed, as

Tr A(B ⊗ B) = 〈Vd(B)|Md(A)|Vd(B)〉 � 0 for every B ∈ Mh
d(C)

and Vd is onto, we get that Md(A) is positive or Md(A) = ∑
α |τα〉〈τα|. Now, because Md is

one-to-one and using property (iii) above, we have

A = M−1
d

(∑
α

|τα〉〈τα|
)

=
∑

α

M−1
d (|τα〉〈τα|) =

∑
α

V −1
d (τα) ⊗ V −1

d (τα),

proving our statement. Constructing the maps Vd and Md and verifying their properties is
rather tedious. We therefore provide the details separately in appendices A–C.

�

3. Finite size symmetric states

In this section we focus on the distance between the two-site marginal of an N-particle
symmetric state and the two-site exchangeable states. Let SN be the set of symmetric states ω

of two particles which have a symmetric extensions to N sites and let S∞ be the exchangeable
two-particle states. Obviously,

S2 ⊃ S3 · · · ⊃ SN ⊃ SN+1 · · · ⊃ S∞.

The sets SN are closed and convex in the state space of Md(C)⊗Md(C) for all N = 2, 3, . . ..
We can now wonder about the distance of SN to the exchangeable states S∞,

d(SN,S∞) = max
ω∈SN

d(ω,S∞) = max
ω∈SN

min
ω′∈S∞

‖ω − ω′‖
= max

ω∈SN
min

ω′∈S∞
Tr |ρ − ρ ′|, (7)

where ρ and ρ ′ are the density matrices corresponding to the two-site states ω and ω′. We
know that for N → ∞, this distance vanishes, but we are interested in the behaviour with N.
An upper bound of the order 1/

√
N was obtained in [9]. Such bounds yield a measure of the

maximal entanglement of states in SN . For a detailed analysis of a model, see e.g. [2].
A possible approach to this question is to use the information on the structure of symmetric

states that can be obtained from group theory. The decomposition of the natural representation
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of the permutation group SN of a set of N elements on (Cd)⊗N given in (1) in irreducible
representations is a highly non-trivial achievement of group theory [5]. The result is that the
irreducible representation of SN is labelled by standard Young tableaux T . The irreducible
representation corresponding to T has dimension d(T ) and occurs with a multiplicity m(T ),
both d and m are explicitly known, moreover, d depends on N and m on N and d. Hence, there
is a decomposition

(Cd)⊗N = ⊕
T

C
m(T ) ⊗ C

d(T ). (8)

Any symmetric N-particle density matrix is then of the form

ρ = ⊕
T

c(T )ρT ⊗ 1
¯
, (9)

where ρT is a density matrix on C
m(T ) and c(T ) are suitably chosen non-negative normalization

coefficients. In order to estimate the distance (7) we can compute the two-site marginals of a
state determined by a pure ρT in (9) and estimate its distance from the exchangeable states.
Such a computation is, however, rather involved. We nevertheless sketch an example of the
computation for the case d = 2.

Considering C
2 as the state space of a single spin-1/2 particle, the decomposition (8) is

nothing else than the standard decomposition of a system of N spin-1/2 particles according to
total spin. Any value of the spin in {0, 1, . . . , N/2} for even N and {1/2, 3/2, . . . , N/2} for
odd N occurs. Let us simplify the problem even further by choosing a completely symmetric
normalized vector � in (C2)⊗N . We fix canonical basis vectors | ↑〉 and | ↓〉 in C

2, e.g. to
the eigenstates of the z-component of the spin. A natural basis of the completely symmetric
subspace of (C2)⊗N is then {|n〉 | n = 0, 1, . . . N} where |n〉 is the normalized state obtained
by symmetrizing an elementary tensor with n factors |↑〉 and N − n factors |↓〉. Our vector �

can then be written as

� =
N∑

n=0

αn|n〉, (10)

where αn are components of a normalized vector in C
N+1. To calculate 〈�|X|�〉, we need to

know 〈m|X|n〉. We are especially interested in

X = A ∈ M2 and X = M ∈ M2 ⊗ M2.

A possible trick is to consider

X = ⊗NesA = 1
¯

+
N∑

j=1

Aj +
s2

2


 ∑

{i,j |i �=j}
Ai ⊗ Aj +

N∑
j=1

A2
j


 + · · ·

with A ∈ M2. Then

desA

ds

∣∣∣∣
s=0

=
N∑

j=1

Aj

d2esA

ds2

∣∣∣∣
s=0

=
∑

{i,j |i �=j}
Ai ⊗ Aj +

N∑
i=1

A2
i

and, because of symmetry,

〈m|A|n〉 = 1

N
〈m|desA

ds

∣∣∣∣
s=0

|n〉 (11)
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〈m|A ⊗ A|n〉 = 1

N(N − 1)


〈m|d2esA

ds2

∣∣∣∣
s=0

|n〉 − 〈m|
N∑

j=1

A2
j |n〉


 . (12)

Now we have the following result:

〈m| ⊗N esA|n〉 =
(

N

m

)−1/2 (
N

n

)−1/2

×
max(n,m)∑

x↑↑=0(
N

x↑↑x↑↓x↓↑x↓↓

)
((esA)↑↑)x↑↑

(
(esA)↑↓

)x↑↓
((esA)↓↑)x↓↑((esA)↓↓)x↓↓ ,

with m = x↑↑ + x↑↓ and n = x↑↑ + x↓↑ and N = x↑↑ + x↑↓ + x↓↑ + x↓↓. As seen in (11), we
can calculate the derivative of the previous formula and divide by N to obtain 〈n|A|m〉. This
yields

〈m|A|n〉 = 1

N
(mδm,nA↑↑ +

√
m(N − m + 1)δm,n−1A↑↓

+
√

(m − 1)(N − m)δm−1,nA↓↑ + (N − m)δm,nA↓↓).

Similar computations with the second derivatives yield

〈m|B ⊗ C|n〉 = 1

N(N − 1)
[m(m − 1)B↑↑C↑↑δm,n

+ m
√

m(N − m + 1)(B↑↑C↑↓ + B↑↓C↑↑)δm−1,n

+ m
√

(N − m)(m + 1)(B↑↑C↓↑ + B↓↑C↑↑)δm+1,n

+ m(N − m)(B↑↑C↓↓ + B↓↓C↑↑)δm,n

+
√

m(m − 1)(N − m + 2)(N − m + 1)B↑↓C↑↓δm−2,n

+ m(N − m)(B↑↓C↓↑ + B↓↑C↑↓)δm,n

+ (N − m)
√

m(N − m + 1)(B↑↓C↓↓ + B↓↓C↑↓)δm−1,n

+
√

(m + 2)(m + 1)(N − m)(N − m − 1)B↓↑C↓↑δm+2,n

+ (N − m − 1)
√

(m + 1)(N − m)(B↓↑C↓↓ + B↓↓C↓↑)δm+1,n

+ (N − m)(N − m − 1)B↓↓C↓↓δm,n].

In particular,

TrN−2|n〉〈n| = 1

4
(P1 + P−1 + Pi + P−i ) + O

(
1

N

)
,

where Pε denotes the projection on ⊗2
1√
N

(
√

n| ↑〉 + ε
√

N − n| ↓〉) for ε = 1,−1, i or −i.

We obtain that the two-site marginal of |n〉〈n| is separable up to a correction of order 1
N

. A
similar computation shows that the marginal determined by (10) is, up to order 1/N , separable.
The following theorem provides a non-combinatorial answer to the question.

Theorem 4. The distance between the two-site marginals of symmetric states on N sites and
the exchangeable two-site states is not larger than d(d + 1)/N where d is the dimension of the
single-site algebra.
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Proof. Let us denote, for B ∈ Mh
d(C), by Bj a copy of B at site j . By positivity and symmetry

of an extension ωN of ω we have

0 � ωN




 N∑

j=1

Bj




2

 = N(N − 1)ω(B ⊗ B) + Nω(B2).

Let P s be the projector on the symmetric subspace of C
d ⊗ C

d , which has dimension d(d+1)/2,
then

Tr P sB ⊗ B = 1
2 Tr B2 + 1

2 (Tr B)2 for every B ∈ Mh
d(C).

Choose now c = Nd(d +1)/(N −1+d(d +1)) � d(d +1) for d = 2, 3, . . . and N = 3, 4, . . .,
then for every B ∈ Mh

d(C),(
1 − c

N

)
ω(B ⊗ B) +

c

N

2

d(d + 1)
Tr P sB ⊗ B

� −
(

1 − c

N

) 1

N − 1
ω(B2) +

c

Nd(d + 1)
Tr B2 +

c

Nd(d + 1)
(Tr B)2

� 1

N − 1 + d(d + 1)
(Tr B2 − ω(B2))

� 0.

Now by theorem 2 we get that

X ∈ Md(C) ⊗ Md(C) 	→
(

1 − c

N

)
ω(X) +

c

N

2

d(d + 1)
Tr P sX

is an exchangeable state. And so we have that

d(SN,S∞) � c

N
� d(d + 1)

N
. �

4. Mean-field models of composite particles

The Hamiltonian of a mean-field system of N quantum spins with a pair interaction h is

HN = − 2

N

∑
{i,j |1�i<j�N}

hij . (13)

Here h is a Hermitian matrix on C
d ⊗ C

d which is invariant under the flip operation

〈ζ ⊗ η|h|ϕ ⊗ ψ〉 = 〈η ⊗ ζ |h|ψ ⊗ ϕ〉, η, ζ, ϕ, ψ ∈ C
d .

We shall, moreover, assume that h is ferromagnetic in the sense that there exist Xα = (Xα)∗ ∈
Md(C) such that

h =
∑

α

Xα ⊗ Xα. (14)

The factor 2/N in (13) is needed to obtain a good thermodynamic behaviour.
A common example of such a model is the BCS-model [10] where

HN = −χ

(
N∑

i=1

Sz
i

)
− λ

2N

(
N∑

i=1

S+
i

) N∑
j=1

S−
j




= −χ

(
N∑

i=1

Sz
i

)
− λ

2N

N∑
{i,j=1|i �=j}

(
Sx

i Sx
j + S

y

i S
y

j

)
+ O(1).



Finite size mean-field models 13851

Here Sx, Sy and Sz denote the generators of SU(2),

Sx = 1

2

(
0 1
1 0

)
, Sy = 1

2

(
0 −i
i 0

)
, Sz = 1

2

(
1 0
0 −1

)
,

and S± = Sx ± iSy .
Using (14), we can rewrite the N-particle Hamiltonian

HN = −N
∑

α

(
1

N

N∑
i=1

Xα
i

)2

+
1

N

∑
α

(
N∑

i=1

(
Xα

i

)2

)
. (15)

The second term in this expression has a norm of order 1 and is therefore thermodynamically
irrelevant. Therefore, up to a correction of order 1, HN is a sum of negative terms. Moreover,
because the Hamiltonian HN is permutation invariant, the average ground state energy can
be computed by varying over the fully symmetric states. Indeed, the canonical Gibbs state at
inverse temperature β is invariant under permutations of the sites and tends to the projector on
the eigenspace of ground states when β → ∞. After (17) we show that, for the interactions
we consider, it is sufficient to vary over the pure symmetric states, which is a proper subclass
of the symmetric states, sometimes called the Bose symmetric states.

As with exchangeable states, there is the notion of Bose exchangeable states. A state
ω on ⊗NMd(C) is called Bose exchangeable if it admits for any M > 0 a Bose symmetric
extension ω(N+M) to ⊗N+MMd(C). I.e., for any permutation π of a set of N + M points and
any A ∈ ⊗N+MMd(C),

ω(N+M)(A) = ω(N+M)(AUπ), (16)

with Uπ as in (1). Note that the asymmetry in condition (16) is only apparent as

ω(N+M)(UπA) = ω(N+M)(A∗Uπ) = ω(N+M)(A∗) = ω(N+M)(A).

The analogue of theorem 1 is then [7]

Theorem 5. If ω is a Bose exchangeable state on ⊗NMd(C), then

ω =
∫

C
d
proj

dµ([ϕ]) ⊗N [ϕ],

where C
d
proj is the complex projective d-dimensional Hilbert space and µ is a probability

measure on C
d
proj. By [ϕ] we denote the pure state of Md(C) determined by the subspace Cϕ

with ‖ϕ‖ = 1, i.e.

[ϕ](A) := 〈ϕ|A|ϕ〉, A ∈ Md(C).

The asymptotic ground state energy density of a mean-field Hamiltonian with pair
interaction h is then given by

e0(h) := lim
N→∞

1

N
inf
ω

ω(HN).

Because of the permutation invariance and of condition (14), we have

e0(h) = − max
[ϕ]

([ϕ] ⊗ [ϕ](h)). (17)

Indeed, by theorem 1 it suffices to compute the infimum over product exchangeable states and
if

ρ =
∑

i

ri |ϕi〉〈ϕi |
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is the eigenvalue decomposition of ρ we have, using condition (14) and the convexity of
x 	→ x2,

ρ ⊗ ρ(h) =
∑

α

ρ(Xα)2 =
∑

α

(∑
i

ri[ϕi](Xα)

)2

�
∑

α

∑
i

ri([ϕi](Xα))2 =
∑

i

ri[ϕi] ⊗ [ϕi](h).

The state space of a composite particle is of the form C
d1 ⊗C

d2 . We shall consider a simple
pair interaction h12 = h1 ⊗ h2 between such pair interactions with h1 and h2 ferromagnetic in
the sense of (14). We now have the following result.

Theorem 6. Assume that hi ∈ Mdi
(C) ⊗ Mdi

(C), i = 1, 2 are Hermitian, invariant under
the flip and satisfy condition (14). Assume, moreover, that h1 is positive definite, then

e0(h1 ⊗ h2) = −e0(h1)e0(h2).

Proof. By the negativity of the mean-field Hamiltonians corresponding to pair-interactions
satisfying (14), see (15), we have

e0(h1 ⊗ h2) = − max
[ϕ12]

([ϕ12] ⊗ [ϕ12](h1 ⊗ h2))

� − max
{[ϕ12]|[ϕ12]=[ϕ1]⊗[ϕ2]}

([ϕ12] ⊗ [ϕ12](h1 ⊗ h2))

= − max
[ϕ1]

([ϕ1] ⊗ [ϕ1](h1)) max
[ϕ2]

([ϕ2] ⊗ [ϕ2](h2))

= −e0(h1)e0(h2).

To obtain the converse inequality, consider a normalized vector ϕ12 ∈ C
d1 ⊗ C

d2 and the
state

ω
[ϕ12]
2 (x) := [ϕ12] ⊗ [ϕ12](h1 ⊗ x)

[ϕ12] ⊗ [ϕ12](h1 ⊗ 1
¯
)

on Md2(C) ⊗ Md2(C). This state is flip-invariant and, because

h1 =
∑

α

Xα ⊗ Xα

enjoys the property

ω
[ϕ12]
2 (Y ⊗ Y ) � 0, Y = Y ∗ ∈ Md2(C).

Hence, by theorem 2, it is a mixture of product states. Then by the remarks above

−ω
[ϕ12]
2 (h2) � e0(h2).

We therefore have

e0(h1 ⊗ h2) = − max
[ϕ12]

([ϕ12] ⊗ [ϕ12](h1 ⊗ h2))

= − max
[ϕ12]

([ϕ12] ⊗ [ϕ12](h1 ⊗ 1
¯
)ω

[ϕ12]
2 (h2))

� −(−e0(h2)) max
[ϕ12]

([ϕ12] ⊗ [ϕ12](h1 ⊗ 1
¯
))

� −e0(h1)e0(h2).

The last estimate follows from the fact that 1
¯

is positive definite and satisfies condition (14).
�
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Two remarks are here in order. There doesn’t seem to be a simple extension of theorem
4 to finite temperatures, at least no simple relation between the free energy densities of the
composite system and the components seems to exist. A second remark is that the theorem
can be used to give a partial answer to the problem of multiplicativity of maximal two-norm
of quantum channels [4, 8]. Unfortunately, the positivity condition on h1 imposes some
restriction on the allowed channels. A further elaboration of this matter will be considered in
a future publication.
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Appendix A. The map Vd

Every Hermitian matrix B in Mh
d(C) can be written as

B =
(

b 〈ψ |
|ψ〉 B0

)
,

where b ∈ R, |ψ〉 is a vector in C
d−1 and B0 a matrix in Mh

d−1(C). We then define the map

Vd : Mh
d(C) → R

d2
inductively as

Vd(B) :=




b√
2 Re|ψ〉√
2 Im|ψ〉

Vd−1(B0)


 .

This map has the following properties for B1, B2 ∈ Mh
d(C):

(i) Vd(B1 + B2) = Vd(B1) + Vd(B2).
(ii) For every λ ∈ R, Vd(λB1) = λVd(B1).

(iii) Tr B1B2 = 〈Vd(B1)|Vd(B2)〉.
This can easily be proved by induction on d. Moreover, the map Vd is one-to-one and onto.
Note, however, that the map Vd is basis dependent.

Appendix B. The map Md

The subspace K

Before we start to search for a good map Md , we take a closer look at the subset K of
flip-symmetric, complex, Hermitian matrices on C

d2
. We begin by decomposing the d-

dimensional Hilbert space C
d in a direct sum of a one-dimensional and a (d − 1)-dimensional

space, C
d = C ⊕ C

d−1. We are interested in the symmetric, (Cd ⊗ C
d)s, and antisymmetric,

(Cd ⊗ C
d)a, subspaces of C

d ⊗ C
d as they are the ones left invariant by the elements in C∗.

We consider a basis {e0, . . . , ed−1} of C
d . Then a basis of (Cd ⊗ C

d)s is given by

{e0 ⊗ e0, g1, . . . , gd−1, f1, . . . , fd(d−1)/2},
where gi := 1√

2
(e0 ⊗ ei + ei ⊗ e0) and where the fi generate the symmetric subspace of

C
d−1 ⊗ C

d−1. Similarly, a basis of (Cd ⊗ C
d)a is given by

{h1, . . . , hd−1, k1, . . . , k(d−2)(d−1)/2},
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where hi := 1√
2
(e0 ⊗ ei − ei ⊗ e0) and where the ki generate the antisymmetric subspace of

C
d−1 ⊗ C

d−1.
A matrix A ∈ K can be written in this symmetric–antisymmetric basis as

A =




a 〈ϕ| 〈�| 0 0
|ϕ〉 X1 Y1 0 0
|�〉 Y ∗

1 Z1 0 0
0 0 0 X2 Y2

0 0 0 Y ∗
2 Z2


 , (B.1)

where

a ∈ R, ϕ ∈ C
d−1,� ∈ (Cd−1 ⊗ C

d−1)s, X1, X2 ∈ Md−1(C)∗

Z1 : (Cd−1 ⊗ C
d−1)s → (Cd−1 ⊗ C

d−1)s, Z2 : (Cd−1 ⊗ C
d−1)a → (Cd−1 ⊗ C

d−1)a

Y1 : (Cd−1 ⊗ C
d−1)s → C

d−1 and Y2 : (Cd−1 ⊗ C
d−1)a → C

d−1.

In order to ensure that we map the subspace K in a suitable vector space, we can
count its real dimension. The restriction of elements of K to the symmetric subspace needs
d(d + 1)/2 real parameters on the diagonal and two times (for the real and imaginary parts)
[d(d + 1)/2][(d(d + 1)/2) − 1]/2 off the diagonal. For the restriction to the antisymmetric
subspace we need d(d − 1)/2) + [d(d − 1)/2][(d(d − 1)/2) − 1] parameters. In total this
amounts to d2(d2 + 1)/2 real parameters, which is exactly equal to the dimension of the
symmetric real matrices of dimension d2, i.e. the matrices M ∈ Md2(R) such that M = MT

where T denotes transposition.

The map Md Denote the symmetric real matrices of dimension d2 by Mh
d2(R). Using the

parametrization (B.1) for A ∈ K we define the map Md : K → Mh
d2(R) by

Md(A) :=

×




a 〈Re ϕ| 〈Im ϕ|
∣∣∣∣Vd−1

(
X1 + X2

2

)〉

|Re ϕ〉 Re X1 − Re X2

2
+ [Re �]

Im X1 − Im X2

2
+ [Im �] T1(Y1, Y2)

|Im ϕ〉
(

Im X1 − Im X2

2
+ [Im �]

)T Re X1 − Re X2

2
− [Re �] T2(Y1, Y2)〈

Vd−1

(
X1 + X2

2

)∣∣∣∣ T1(Y1, Y2)
T T2(Y1, Y2)

T Md−1

(
Z1 0

0 Z2

)



,

where for i �= j ,

[Re �]ii := Re �ii, [Re �]ij := 1√
2

Re �ij , [Im �]ii := Im �iiand [Im �]ij := 1√
2

Im �ij .

We describe the maps T1 and T2 in the two following paragraphs. As with Vd , the map Md is
basis dependent

The map T Recalling that {ei}d−1
i=1 is a basis we choose in C

d−1, let us, for i < j, i, j =
1, . . . , d − 1 and any matrix B0 ∈ Mh

d−1(C) put

βR(i, j) := α if and only if 〈Vd−1(B0)|eα〉 =
√

2 Re[B0]ij
βI (i, j) := α if and only if 〈Vd−1(B0)|eα〉 =

√
2 Im[B0]ij and

β(i) := α if and only if 〈Vd−1(B0)|eα〉 = [B0]ii .

This way of denoting the matrix elements will be useful later on when we will compare B ⊗B

with the projection on Vd(B). We also define ε�
k = 1 if k < � and −1 otherwise. We are now

ready to define the map T1 by looking at each of the matrix elements. In the following, i, k, �

run from 1 to d − 1 and i < �, i �= k, � �= k
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• [T1(Y1, Y2)]i,β(i) := Re[Y1]i,ii
• [T1(Y1, Y2)]k,β(i) := 1√

2
Re
(
[Y1]i,ik + εi

k[Y2]i,ik
)

• [T1(Y1, Y2)]i,β(i,�) := 1√
2

Re
(
[Y1]�,ii + [Y1]i,i�+ε�

i [Y2]i,i�√
2

)
• [T1(Y1, Y2)]�,βR(i,�) := 1√

2
Re
(
[Y1]i,�� + [Y1]�,i�+εi

�[Y2]�,i�√
2

)
• [T1(Y1, Y2)]k,βR(i,�) := Re

( [Y1]�,ik+εi
k[Y2]�,ik+[Y1]i,�k+ε�

k [Y2]i,�k
2

)
• [T1(Y1, Y2)]i,βI (i,�) := − 1√

2
Im
(
[Y1]�,ii − [Y1]i,i�+ε�

i [Y2]i,i�√
2

)
• [T1(Y1, Y2)]�,βI (i,�) := 1√

2
Im
(
[Y1]i,�� − [Y1]�,i�+εi

�[Y2]�,i�√
2

)
• [T1(Y1, Y2)]k,βI (i,�) := −Im

( [Y1]�,ik+εi
k[Y2]�,ik−[Y1]i,�k−ε�

k [Y2]i,�k
2

)
The map T The notations are similar to those used for the map T1. Again we define each
matrix element

• [T2(Y1, Y2)]i,β(i) := Im[Y1]i,ii
• [T2(Y1, Y2)]k,β(i) := 1√

2
Im
(
[Y1]i,ik + εi

k[Y2]i,ik
)

• [T2(Y1, Y2)]i,βR(i,�) := 1√
2

Im
(
[Y1]�,ii + [Y1]i,i�+ε�

i [Y2]i,i�√
2

)
• [T2(Y1, Y2)]�,βR(i,�) := 1√

2
Im
(
[Y1]i,�� + [Y1]�,i�+εi

�[Y2]�,i�√
2

)
• [T2(Y1, Y2)]k,βR(i,�) := Im

( [Y1]�,ik+εi
k[Y2]�,ik+[Y1]i,�k+ε�

k [Y2]i,�k
2

)
• [T2(Y1, Y2)]i,βI (i,�) := 1√

2
Re
(
[Y1]�,ii − [Y1]i,i�+ε�

i [Y2]i,i�√
2

)
• [T2(Y1, Y2)]�,βI (i,�) := − 1√

2
Re
(
[Y1]i,�� − [Y1]�,i�+εi

�[Y2]�,i�√
2

)
• [T2(Y1, Y2)]k,βI (i,�) := Re

( [Y1]�,ik+εi
k[Y2]�,ik−[Y1]i,�k−ε�

k [Y2]i,�k
2

)
.

One can easily see that, given T1(Y1, Y2) and T2(Y1, Y2), one can reconstruct the matrices
Y1 and Y2. Also these two maps are real linear.

Properties of the map Md

The map Md has similar properties as the map Vd

• Md(A1 + A2) = Md(A1) + Md(A2).
• For every λ ∈ R,Md(λA) = λMd(A).

It is also one-to-one and onto. Again one can easily check these properties by induction
on d using Im(X

ij

1 − X
ij

2 ) = −Im(X
ji

1 − X
ji

2 ).

The image of B ⊗ B

Fix B ∈ Mh
d(C) and consider the tensor product of B with itself

B ⊗ B =




b2
√

2b〈ψ | 〈(ψ ⊗ ψ)s| 0 0√
2b|ψ〉 bB0 + |ψ〉〈ψ | (〈ψ | ⊗ B0)

s 0 0
|(ψ ⊗ ψ)s〉 (|ψ〉 ⊗ B0)

s (B0 ⊗ B0)
s 0 0

0 0 0 bB0 − |ψ〉〈ψ | (〈ψ | ⊗ B0)
a

0 0 0 (|ψ〉 ⊗ B0)
a (B0 ⊗ B0)

a


 .
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We will prove that B ⊗ B is mapped by Md on |Vd(B)〉〈Vd(B)| with

Vd(B) =




b√
2〈Re ψ |√
2〈Im ψ |

Vd−1(B0)


 .

First we write down the image of B ⊗ B:

Md(B ⊗ B) =


b2 b
√

2〈Re ψ | b
√

2〈Im ψ | b〈Vd−1(B0)|
b
√

2|Re ψ〉 Re|ψ〉〈ψ | + [Re(ψ ⊗ ψ)s] Im|ψ〉〈ψ | + [Im(ψ ⊗ ψ)s] T1((〈ψ | ⊗ B0)
s, (〈ψ | ⊗ B0)

a)

b
√

2|Im ψ〉 Im|ψ〉〈ψ | + [Im(ψ ⊗ ψ)s]∗ Re|ψ〉〈ψ | − [Re(ψ ⊗ ψ)s] T2((〈ψ | ⊗ B0)
s, (〈ψ | ⊗ B0)

a)

b|Vd−1(B0)〉 T1((〈ψ | ⊗ B0)
s, (〈ψ | ⊗ B0)

a)∗ T2((〈ψ | ⊗ B0)
s, (〈ψ | ⊗ B0)

a)∗ Md−1(B0 ⊗ B0)




The first row and column are encouraging but we still have some steps to verify. If we
use induction on d, we also get that Md−1(B0 ⊗ B0) = |Vd−1(B0)〉〈Vd−1(B0)|. Let us look at
the other parts of the matrix.

Looking at the elements in the middle of the matrices Md(B ⊗ B), we need to prove that

• Re|ψ〉〈ψ | + [Re(ψ ⊗ ψ)s] = |√2 Re ψ〉〈√2 Re ψ |,
• Re|ψ〉〈ψ | − [Re(ψ ⊗ ψ)s] = |√2 Im ψ〉〈√2 Im ψ | and
• Im|ψ〉〈ψ | + [Im(ψ ⊗ ψ)s] = |√2 Re ψ〉〈√2 Im ψ |

in order to obtain that B ⊗ B is mapped on |V (B)〉〈V (B)|.
Let us look at the different matrix elements

• Re|ψ〉〈ψ | + [Re(ψ ⊗ ψ)s] = 2|Re ψ〉〈Re ψ |. Indeed, it is easy to see that

[Re|ψ〉〈ψ | + [Re(ψ ⊗ ψ)s]]ii = ((Reψi)
2 + (Im ψi)

2) + Re ψ2
i = 2(Re ψi)

2 and

[Re|ψ〉〈ψ | + [Re(ψ ⊗ ψ)s]]ij = Re ψi Re ψj + Im ψi Im ψj + 1√
2

Re(
√

2ψiψj )

= 2 Re ψi Re ψj .

• Re|ψ〉〈ψ | − [Re(ψ ⊗ ψ)s] = 2|Im ψ〉〈Im ψ |. The proof is similar to that above.
• Im|ψ〉〈ψ | + [Im(ψ ⊗ ψ)s] = |Re ψ〉〈Im ψ |. Indeed,

[Im|ψ〉〈ψ | + [Im(ψ ⊗ ψ)s]]ii = 2 Re ψiIm ψi and

[Im|ψ〉〈ψ | + [Im(ψ ⊗ ψ)s]]ij = Re ψi Im ψj − Im ψi Re ψj + 1√
2

Im(
√

2 ψiψj )

= 2 Re ψi Im ψj .

Now the proof is almost complete. We still have to verify that (〈ψ |⊗B0)
s and (〈ψ |⊗B0)

a

are mapped by T1 and T2 on |√2 Re ψ〉〈Vd−1(B0)| and |√2 Im ψ〉〈Vd−1(B0)| respectively.

The map T1 We now verify that

T1((〈ψ | ⊗ B0)
s, (〈ψ | ⊗ B0)

a) = |
√

2 Re ψ〉〈Vd−1(B0)|.
• [T1((〈ψ | ⊗ B0)

s, (〈ψ | ⊗ B0)
a)]i,β(i) = Re(

√
2ψi[B0]ii ) =

√
2 Re ψi[B0]ii

• [T1((〈ψ | ⊗ B0)
s, (〈ψ | ⊗ B0)

a)]k,β(i)

= 1√
2

Re(ψi[B0]ik + ψk[B0]i i + εi
kε

k
i (ψi[B0]ik − ψk[B0]ii ))

=
√

2 Re ψk[B0]ii



Finite size mean-field models 13857

• [T1((〈ψ | ⊗ B0)
s, (〈ψ | ⊗ B0)

a)]i,βR(i,�)

= 1√
2

Re

(√
2ψi[B0]�i +

ψi[B0]i� + ψ�[B0]ii + (ψi[B0]i� − ψ�[B0]ii )√
2

)
= Re(ψi([B0]i� + [B0]�i)) =

√
2 Re ψi

√
2 Re[B0]i�

• [T1((〈ψ | ⊗ B0)
s, (〈ψ | ⊗ B0)

a)]�,βR(i,�)

= 1√
2

Re

(√
2ψ�[B0]i� +

ψi[B0]�� + ψ�[B0]�i − (ψi[B0]�� − ψ�[B0]�i)√
2

)
= Re(ψ�([B0]i� + [B0]�i)) =

√
2 Re ψ�

√
2 Re[B0]i�

• [T1((〈ψ | ⊗ B0)
s, (〈ψ | ⊗ B0)

a)]k,βR(i,�)

= 1

2
Re(ψi[B0]�k + ψk[B0]�i + εi

kε
k
i (ψi[B0]�k − ψk[B0]�i)

+ ψ�[B0]ik + ψk[B0]i� + ε�
kε

k
� (ψ�[B0]ik − ψk[B0]i�))

= Re ψk([B0]i� + [B0]�i) =
√

2 Re ψk

√
2 Re[B0]i�

• [T1((〈ψ | ⊗ B0)
s, (〈ψ | ⊗ B0)

a)]i,βI (i,�)

= 1√
2

Im

(
−

√
2ψi[B0]�i +

ψi[B0]i� + ψ�[B0]ii − (ψi[B0]i� − ψ�[B0]ii )√
2

)
= Im(ψi([B0]i� − [B0]�i)) =

√
2 Re ψi

√
2 Im[B0]i�

• [T1((〈ψ | ⊗ B0)
s, (〈ψ | ⊗ B0)

a)]�,βI (i,�)

= 1√
2

Im

(√
2 ψ�[B0]i� − ψi[B0]�� + ψ�[B0]�i − (ψi[B0]�� − ψ�[B0]�i)√

2

)
= Im(ψl�([B0]i� − [B0]�i)) =

√
2 Re ψ�

√
2 Im[B0]i�

• [T1((〈ψ | ⊗ B0)
s, (〈ψ | ⊗ B0)

a)]k,βI (i,�)

= 1

2
Im(−ψi[B0]�k − ψk[B0]�i − εi

kε
k
i (ψi[B0]�k − ψk[B0]�i)

+ ψ�[B0]ik + ψk[B0]i� + ε�
kε

k
� (ψ�[B0]ik − ψk[B0]i�))

= Im ψk([B0]i� − [B0]�i) =
√

2 Re ψk

√
2 Im[B0]i�

The map T2 The proof that

T2((〈ψ | ⊗ B0)
s, (〈ψ | ⊗ B0)

a)) = |
√

2 Im ψ〉〈Vd−1(B0)|
is completely similar, so we will not provide the details. We have now proven a one-to-one
correspondence between B ⊗B ∈ (Md(C)⊗Md(C))h and the subset of rank one projections
in Md2(R). We now have real linear one-to-one and onto maps Vd and Md that satisfy
condition (iii) in section 2.2. Let us now examine condition (ii).

Appendix C. Tr A(B ⊗ B) = 〈Vd(B)|Md(A)|Vd(B)〉
We start by calculating the trace of A(B ⊗ B).

Tr A(B ⊗ B) = Tr As(B ⊗ B)s + Tr Aa(B ⊗ B)a

= [ab2 + b Tr B0X1 + 〈ψ |X1|ψ〉 + Tr Z1(B0 ⊗ B0)
s + 2 Re

√
2b〈ψ |ϕ〉

+ 2 Re〈ψ ⊗ ψ |�〉 + 2 Re Tr(〈ψ | ⊗ B)sY ∗
1 ] + [b Tr B0X2 − 〈ψ |X2|ψ〉

+ Tr(B0 ⊗ B0)
aZ2 + 2 Re Tr(〈φ| ⊗ B0)

aY ∗
2 ].
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We can restructure this expression

Tr A(B ⊗ B) = bab + 2b
√

2 Re〈ϕ|ψ〉 + 2b Tr

(
X1 + X2

2

)
B0

+ 〈ψ |X1 − X2|ψ〉 + 2 Re〈ψ ⊗ ψ |�〉
+ 2 Re Tr(〈ψ | ⊗ B)sY ∗

1 + 2 Re Tr(〈φ| ⊗ B0)
aY ∗

2

+ Tr(B0 ⊗ B0)

(
Z1 0
0 Z2

)
.

We rewrite the first line of the right-hand side of the above equality. To make the link with
Vd(B) and Md(A), we express ψ and ϕ in their real and imaginary parts. We also use property
(iii) of the map Vd . We then get

bab + 2b
√

2 Re〈ϕ|ψ〉 + 2b Tr

(
X1 + X2

2

)
B0

= bab + 2b(〈Re ϕ|
√

2 Re ψ〉 + 〈Im ϕ〉|
√

2 Im ψ)

+ 2b

〈
Vd−1

(
X1 + X2

2

) ∣∣∣ Vd−1(B0)

〉
.

This looks promising, we can also try to express the second line in term of elements appearing
in Vd(B) and Md(A) or by looking at the real and imaginary part of the matrix and vector
components

〈ψ |X1 − X2|ψ〉 + 2 Re〈(ψ ⊗ ψ)s|�〉 =
∑

i

((Re ψi)
2 + (Im ψi)

2)([X1]ii − [X2]ii )

+ 2
∑

{i,j |i<j}
[(Re ψi Re ψj + Im ψi Im ψj) Re([X1]ij − [X2]ij )

− (Re ψi Im ψj + Im ψi Re ψj) Im([X1]ij − [X2]ij )]

+ 2
∑

i

[((Re ψi)
2 − (Im ψi)

2) Re �ii + 2 Re ψi Im ψi Im �ii]

+ 2
∑

{i,j |i<j}

√
2[(Re ψi Re ψj − Im ψi Im ψj) Re �ij

+ (Re ψi Im ψj + Im ψi Re ψj)Im �ij ]

= 〈
√

2 Re ψ |Re X1 − Re X2

2
+ [Re �]|

√
2 Re ψ〉

+ 〈
√

2 Im ψ |Re X1 − Re X2

2
− [Re �]|

√
2 Im ψ〉

+ 2〈
√

2 Re ψ | ImX1 − ImX2

2
+ [Im �]|

√
2 Im ψ〉.

This also points out to the equality we are trying to prove. The third line is less straightforward
but we can rewrite it

2 Re Tr(〈ψ | ⊗ B)sY ∗
1 + 2 Re Tr(〈φ| ⊗ B0)

aY ∗
2 = 2 Re

∑
i

[∑
k

√
2[Ȳ 1]i,(k,k)ψk[B0]ik

+
∑

{k,�|k<�}
{(ψk[B0]i� + ψ�[B0]ik)[Ȳ 1]i,(k,�) + (ψk[B0]i� − ψ�[B0]ik)[Ȳ 2]i,(k,�)}

]

= 2 Re
∑

i

[√
2[Ȳ 1]i,(ii)ψi[B0]ii +

∑
{k|k �=i}

√
2[Ȳ 1]i,(k,k)ψk[B0]ik
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+
∑

{k|k �=i}
ψk[B0]ii

(
[Ȳ 1]i,(i,k) + εi

k[Ȳ 2]i,(i,k)

)

+
∑

{k,�|k �=�,� �=i}
ψk[B0]i�([Ȳ 1]i,(�,k) + ε�

k [Ȳ 2]i,(�,k))

]

= 2 Re
∑

i


√

2[Ȳ 1]i,(ii)ψi +
∑

{k|k �=i}
ψk([Ȳ 1]i,(i,k) + εi

k[Ȳ 2]i,(i,k))[B0]ii

+
∑

{�|� �=i}


√

2[Ȳ 1]i,(�,�)ψ� +
∑

{k|k �=�}
ψk

(
[Ȳ 1]i,(�,k) + ε�

k [Ȳ 2]i,(�,k)

) [B0]i�




= 2 Re
∑

i


√

2[Ȳ 1]i,(ii)ψi +
∑

{k|k �=i}
ψk

(
[Ȳ 1]i,(i,k) + εi

k[Ȳ 2]i,(i,k)

)
[B0]ii

+
∑

{�|i<�}


√

2[Ȳ 1]i,(�,�)ψ� +
∑

{k|k �=�}
ψk

(
[Ȳ 1]i,(�,k) + ε�

k [Ȳ 2]i,(�,k)

) [B0]i�

+
∑

{�|i<�}


√

2[Ȳ 1]�,(i,i)ψi +
∑

{k|k �=i}
ψk

(
[Ȳ 1]�,(i,k) + εi

k[Ȳ 2]�,(i,k)

) [B̄0]i�




= 2
∑

i

[
(
√

2 Re[Y1]i,(ii) Re ψi +
√

2 Im[Y1]i,(ii) Im ψi)

+
∑

{k|k �=i}

(
Re ψk Re

(
[Y1]i,(i,k) + εi

k[Y2]i,(i,k)

)
+ Im ψk Im

(
[Y1]i,(i,k)

+ εi
k[Y2]i,(i,k)

))
[B0]ii

+
∑

{�|i<�}

{
(
√

2 Re[Y1]i,(�,�) Re ψ� +
√

2 Im[Y1]i,(�,�) Im ψ� +
√

2 Re[Y1]�,(i,i) Re ψi

+
√

2 Im[Y1]�,(i,i) Im ψi)

+
∑

{k|k �=�}

(
Re ψk Re

(
[Y1]i,(�,k) + ε�

k [Y2]i,(�,k)

)
+ Im ψk Im

(
[Y1]i,(�,k) + ε�

k [Y2]i,(�,k)

))

+
∑

{k|k �=i}

(
Re ψk Re

(
[Y1]�,(i,k) + εi

k[Y2]�,(i,k)

)
+ Im ψi Im

(
[Y1]�,(i,k)

+ εi
k[Y2]�,(i,k)

))
Re[B0]i�

}

+
∑

{�|i<�}

{
(−

√
2 Re[Y1]i,(�,�) Im ψl +

√
2 Im[Y1]i,(�,�) Reψ� +

√
2 Re[Y1]�,(i,i) Im ψi

−
√

2 Im[Y1]�,(i,i) Re ψi)

+
∑

{k|k �=�}

(−Im ψk Re
(
[Y1]i,(�,k) + ε�

k [Y2]i,(�,k)

)
+ Re ψk Im

(
[Y1]i,(�,k) + ε�

k [Y2]i,(�,k)

))

+
∑

{k|k �=i}

(
Im ψk Re

(
[Y1]�,(i,k) + εi

k[Y2]�,(i,k)

)− Re ψk Im
(
[Y1]�,(i,k)
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+ εi
k[Y2]�,(i,k)

))
Im[B0]i�

}]

= 2〈
√

2 Re ψ |T1(Y1, Y2)|Vd−1(B0)〉 + 2〈
√

2 Im ψ |T2(Y1, Y2)|Vd−1(B0)〉.
Finally, using induction on d

Tr(B0 ⊗ B0)

(
Z1 0
0 Z2

)
= 〈Vd−1(B0)|Md−1

((
Z1 0
0 Z2

))
|Vd−1(B0)〉.

If we put this all together we get what we wanted to prove, namely

Tr A(B ⊗ B) = bab + 2b(〈Re ϕ|
√

2 Re ψ〉 + 〈Im ϕ|
√

2 Im ψ〉)
+ 2b

〈
Vd−1

(
X1 + X2

2

) ∣∣∣∣Vd−1(B0)

〉

+ 〈
√

2 Re ψ |Re X1 − Re X2

2
+ [Re �]|

√
2 Re ψ〉

+ 〈
√

2 Im ψ |Re X1 − Re X2

2
− [Re �]|

√
2 Im ψ〉

+ 2〈
√

2 Re ψ | ImX1 − Im X2

2
+ [Im �]|

√
2 Im ψ〉

+ 2〈
√

2 Re ψ |T1(Y1, Y2)|Vd−1(B0)〉 + 2〈
√

2 Im ψ |T2(Y1, Y2)|Vd−1(B0)〉
+ 〈Vd−1(B0)|Md

((
Z1 0
0 Z2

))
|Vd−1(B0)〉

= 〈Vd(B)|Md(A)|Vd(B)〉.
To summarize, we have found maps

Vd : Mh
d(C) → R

d2
and Md : (Md(C) ⊗ Md(C))h → Mh

d2(R)

with properties that allow us to prove the second part of theorem 2, see section 2.2.
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